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SUMMARY
We propose a strategy for assessing structural stability in time-series frameworks when potential change
dates are unknown. Existing stability tests are effective in detecting structural change, but procedures for
identifying timing are imprecise, especially in assessing the stability of variance parameters. We present
a likelihood-based procedure for assigning conditional probabilities to the occurrence of structural breaks
at alternative dates. The procedure is effective in improving the precision with which inferences regarding
timing can be made. We illustrate parametric and non-parametric implementations of the procedure through
Monte Carlo experiments, and an assessment of the volatility reduction in the growth rate of US GDP.
Copyright  2006 John Wiley & Sons, Ltd.

1. INTRODUCTION

Following the pioneering work of Andrews (1993), implementation of tests for structural stability
in time-series frameworks for cases in which the timing of potential breaks is unknown has
become straightforward. Hansen (2001) provides an overview of the development of such tests,
and several applications. But while stability tests have proven to be effective in detecting the
presence of structural change, existing procedures for identifying timing are highly imprecise,
especially when applied to breaks in higher-order moments like the variance. For example, in
their analysis of the structural stability of growth in US, GDP, Stock and Watson (2002) report an
asymptotic 67% confidence interval for their estimate of the timing of the occurrence of a reduction
in the innovation variance of this series. This interval spans 12 quarters: 1982:IV–1985:III. Stock
and Watson depart from the conventional use of 95% confidence intervals because, as they note,
‘. . . 95% intervals . . . are so wide as to be uninformative’ (p. 12, fn 4).

Here, we present a likelihood-based procedure designed to pinpoint the timing with which
suspected structural changes are most likely to have occurred. Given the occurrence of n regime
changes, where n is identified a priori, the procedure identifies n break dates as those receiving
highest conditional (given the observed data) probabilities relative to the full range of their potential
alternatives. The effectiveness of classical tests in detecting the presence of structural instability
makes them an attractive tool for identifying the occurrence of regime changes a priori, but
alternative approaches are also applicable (including inter-ocular trauma).

The procedure is related in spirit to a classification analysis, under which the goal is to classify
each element of a set of observations into one of several potential categories (see Anderson,
1984, ch. 6 for an overview and references). Given a model specification with one regime change,
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associated observations will correspond with one of two likelihood functions: one prevailing prior
to the break date and one after the break date. The procedure identifies the break date as the
optimal point at which to divide the sample. Given multiple regime changes, additional issues of
implementation (e.g., timing the breaks jointly or one at a time) arise. The full resolution of these
issues is beyond the scope of this paper, in which we focus exclusively on the case of a single
regime change.

Given one regime change, the specific implementation of the procedure is as follows. First,
a set of data points observed at the beginning of the sample (say, the first 15% of the total
observations) is used to estimate the likelihood function that prevails under the initial structural
regime. Likewise, a set of data points observed at the end of the sample is used to estimate
the likelihood function that prevails under the second regime. Each date lying between these
beginning- and end-of-sample ‘reference subsets’ represents a potential break date; the final step
is to calculate probabilities associated with these mid-sample dates. To calculate the probability
assigned to date j, the subset of mid-sample observations is divided into two sets: one that
predates j and one that postdates j. The likelihood of a regime change at date j is then calculated
by assigning the former set to the beginning-of-sample likelihood function, and the latter set to
the end-of-sample likelihood function. The probability of a regime change at date j is obtained by
comparing its relative likelihood with those of all alternative dates. Parametric, semi-parametric or
non-parametric approaches can be used to approximate the likelihood functions that prevail across
regimes. Also, there are alternative approaches one can use for selecting reference subsets from
which likelihood estimates of parameters are obtained. We consider using fixed and sequentially
expanding subsets here, and obtain slightly superior performance using a particular implementation
of the latter approach; details are provided below.

Given that break date probability calculations are made conditionally on the observed data,
our procedure has a Bayesian flavour. However, unlike a fully Bayesian approach to the prob-
lem of identifying potential structural change, our procedure does not require the specification
of a prior distribution for the parameters of the underlying model specification, nor the speci-
fication of a distributional assumption regarding fundamental innovations. It merely involves a
modest set of probability calculations in support of a simple model-diagnostic exercise. (Appli-
cations of fully Bayesian procedures for evaluating structural stability in time-series frameworks
abound. For example, see Wang and Zivot, 2000 for a recent application to a switching-regression
framework that allows for multiple breaks in the mean and innovation specifications of autore-
gressive processes.)

The remainder of the paper is organized as follows. We begin by illustrating problems suffered
by standard procedures in pinpointing potential break dates. We do so through an empirical
application and a set of Monte Carlo experiments. The empirical application is an analysis of
the volatility reduction undergone by the growth rate of US GDP in the mid-1980s. This volatility
reduction has been analysed extensively through the use of structural-stability tests (e.g., see Kim
and Nelson, 1999; McConnell and Perez-Quiros, 2000; Stock and Watson, 2002). In the Monte
Carlo experiments, we generate artificial time series featuring a volatility reduction designed to
mimic that undergone by the growth rate of US GDP, and estimate break dates using Andrews’
(1993) sup-Wald test statistic and Bai’s (1997) least squares procedure. Next, we outline the
details of our procedure. We then demonstrate its performance under a parametric implementation
by repeating the empirical application and Monte Carlo experiments described above. Finally,
we demonstrate its performance under a non-parametric implementation by again repeating the
empirical application.
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The relative precision with which our procedure identifies break dates in the innovation variance
of an autoregression is striking. For example, Bai’s (1997) least squares procedure based on
auxiliary regressions for squared residuals generates an interval between the 16.5% and 83.5%
quantile of the sampling distribution of 16 quarters under our leading experimental design,
while our procedure generates an interval of 6 quarters under the parametric implementation
we consider, and 7 quarters under the non-parametric implementation. Thus our procedure serves
as an attractive complement to existing procedures for structural instability: existing tests are
effective in identifying the presence of breaks; and our procedure is effective in identifying the
timing with which they occurred.

2. EXISTING PROCEDURES FOR ESTIMATING BREAK DATES: AN ILLUSTRATION

As noted, considerable attention has been given to the issue of whether the volatility reduction
undergone by the growth rate of US GDP represents a structural break. The top panel of Figure 1
illustrates the post-war behaviour of this series, and summary statistics are provided in Table I.
(The series fgt, t : 1 ! Tg is computed as logged differences in quarterly GDP measured in chain-
weighted 1996 prices, annualized by multiplying by 400, spanning 1947:II through 2002:III.)
Prior to 1984:I (the break date identified using the parametric implementation of the probabilistic
procedure discussed below), the standard deviation of this series was 4.73, in comparison with a
measure of 4.05 computed over the full sample, and 2.13 after 1984:I.

To analyse whether this behaviour constitutes a structural break in the volatility of GDP, we
assume an AR(p) specification for gt, i.e.,

gt D � C �1gt�1 C Ð Ð Ð C �pgt�p C εt, var�εt� D �2 �1�

and test for changes of unknown timing in the innovation variance �2. (We use an AR(1)
specification in our applications, as additional lags are statistically insignificant. Use of additional

Table I. Summary statistics

Real GDP growth Mean Std. dev.

Full sample 3.35 4.05
1947:II–1984:I 3.50 4.73
1984:II–2002:III 3.04 2.13

Estimates of gt D � C �1gt�1 C εt, E�ε2
t � D �2 without structural breaks, and sup-Wald statistics for a structural break

Parameter Estimate Std. error sup-Wald stat. Asymptotic p-value Break date

� 2.20 0.39 1.99 0.79 none
�1 0.34 0.07 3.18 0.52 none
� 3.82 33.70 0.00 1984:I

Least squares estimate of the break date of �2

Estimated date 67% conf. interval 95% conf. interval

1983:II 1979:IV–1986:IV (29) 1971:I–1995:III (99)

Note: The numbers of quarters spanned by confidence intervals are given in parentheses.
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Figure 1. GDP growth measured as logged differences in quarterly GDP, measured in chain-weighted 1996
prices, annualized by multiplying by 400, spanning 1947:I through 2002:II (upper panel); heteroskedastic-
ity-consistent Wald statistic sequence for testing for a structural break in the innovation variance of the
AR(1) fitted to the GDP growth rate (solid line, middle panel) and the corresponding asymptotic 5% critical

value (dashed line, middle panel); residual variance as a function of potential break dates (bottom panel)

lags yields similar results.) To test for changes in the parameters of specification (1) at unknown
dates we use a testing procedure based on the Wald form of the Quandt (1960) statistic with
a heteroskedasticity-consistent covariance matrix, following the strategy employed, e.g., by
McConnell and Perez-Quiros (2000) and Stock and Watson (2002). This procedure is based
on the largest Wald statistic (sup-Wald statistic) for a structural break test over all potential
break dates j between dates T1 and T2. (Following McConnell and Perez-Quiros, 2000 and
Stock and Watson, 2002, we use T1 D [0.15 ð T] and T2 D [0.85 ð T].) Asymptotic critical
values for the sup-Wald statistic are provided by Andrews (1993), and asymptotic p-values by
Hansen (1997).

We use this procedure to test for a break in each of the parameters in (1) separately. For a
change in �2, the test is based on the sup-Wald statistic for a break in the mean of the squared
residuals from the estimated autoregression. In particular, letting et denote the residuals associated
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with OLS estimates of (1), the sup-Wald statistic for a break in �2 is supfT1�j�T2g[W�j�], where
the heteroskedasticity-consistent Wald statistic is given by

W�j� D
j�T � j�

T
� O�2

2 � O�2
1�2

(
T � j

jT

) j∑
tD1

�e2
t � O�2

1�2 C
(

j

�T � j�T

) T∑
tDjC1

�e2
t � O�2

2�2

�2�

with O�2
1 D

(∑j
tD1 e2

t

)
/j and O�2

2 D
(∑T

tDjC1 e2
t

)
/�T � j�. Consistent with the findings of Mc-

Connell and Perez-Quiros (2000), this test yields no evidence of a break in the AR parameters �
and �1 estimated for gt, but sharp evidence of a change in �2: the asymptotic p-values obtained
for � and �1 are 0.79 and 0.52, while the p-value obtained for �2 is zero (see Table I).

A natural candidate for an estimate of the date of the occurrence of a break in �2 often used in the
literature is the date j that yields the largest Wald statistic W�j), i.e., jŁ

sw D arg supfT1�j�T2g[W�j�].
For the GDP series we analyse, the estimate is 1984:I. However, note from the second panel of
Figure 1 that there is considerable uncertainty associated with the identification of this specific
date. In particular, Wald statistics become significant at the 5% level as early as 1978, and the
sequence of Wald statistics is fairly flat between 1982 and 1995. Furthermore, it is well known
that break date estimates based upon sup-Wald type statistics are good estimates only when the
homoskedastic form of the Wald statistic is used (e.g., see Hansen, 2001).

An alternative estimator for the timing of the break is provided by Bai’s (1997) least squares
(LS) procedure. Applied to the break date for �2 (under the assumption that the remaining AR
parameters are constant), the procedure involves splitting squared residuals obtained from (1) at
each possible break date, regressing them for both subsamples separately on a constant, and storing
the resulting sum of squared residuals of this auxiliary regression. The estimated break date is
that which minimizes the full-sample residual variance of the auxiliary regressions. Hence, the LS
estimator for the break date of �2 has the following form: jŁ

ls D arg minfT1�j�T2g[S�j�], where

S�j� D
j∑

tD1

�e2
t � O�2

1�2 C
T∑

tDjC1

�e2
t � O�2

2�2 �3�

Bai (1997) derives the asymptotic distribution of this estimator, and shows how it can be used
to construct associated confidence intervals. It can be shown that the residual variance S�j) is
a monotonic transformation of the corresponding homoskedastic form of the Wald statistic for
a break in j (e.g., see Bai, 1997). Thus the date that minimizes S�j) is equal to the date that
maximizes the homoskedastic form of the Wald statistic.

The sequence of residual variances fS�j�, j : T1 ! T2g obtained for GDP growth is illustrated
in the bottom panel of Figure 1. This sequence attains its minimum at 1983:II; the associated
67% asymptotic confidence interval of this estimate is 1979:IV–1986:IV, a rather wide interval
spanning seven years.

To illustrate some small-sample characteristics of these break date estimators, we conducted
a series of six Monte Carlo experiments under which we repeatedly applied the sup-Wald and
LS procedures to artificial data designed to mimic the behaviour of US GDP. Specifically, we
fed artificial realizations of fεtg into (1) (parameterized using the estimates reported in Table I) to
produce artificial realizations of fgtg of length 222 (the number of observations of the actual series).
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Under Experiment 1, for each realization, the first 147 values of fεtg were drawn from a normal
distribution with standard deviation �1 D 4.46 (the estimated standard deviation of AR(1) residuals
of the subsample before the estimated break date 1984:I); likewise, the standard deviation used to
obtain the remaining 75 values was �1 D 2.00 (the estimated standard deviation after the estimated
break date 1984:I). We generated 10 000 artificial samples of fgtg in this manner, and applied the
break date estimation procedures to each realization. Results of Experiment 1 are reported in the
top set of entries in Table II and Figure 2.

The top panel of Figure 2 presents a histogram of the 10 000 break date estimates obtained
using the sup-Wald procedure. (The rate at which these peak values exceeded their associated 5%
asymptotic critical value, indicating a rejection of the null hypothesis of no break, exceeded 99.5%
in each of the six sets of experiments we conducted, indicating outstanding power in detecting
the presence of a break.) The bottom panel is analogous for the LS break date estimates. Both
histograms have distinct peaks at the actual break date of 1984:I, but have thick tails and are
heavily skewed: the histogram of the sup-Wald based estimates to the right, and that of the LS
estimates to the left. Corresponding 67% quantile intervals (between the 16.5% and the 83.5%
quantile) and 95% quantile intervals (between the 2.5% and the 97.5% quantile) are, according to
Table II [1983:IV, 1990:I] and [1982:III, 1994:I] for the estimate based on the sup-Wald statistic
and [1980:II, 1984:I] and [1964:IV, 1984:II] for the LS procedure. Thus, despite the dramatic

Table II. Monte Carlo experiments with existing break date estimators

Mean Std. dev. 67% interval 95% interval

Experiment 1: true break date 84:I with �1 D 4.46, �2 D 2.00

sup-Wald procedure 86.06 13.23 83:IV–90:I(26) 82:III–94:I(47)
LS procedure 81.60 20.44 80:II–84:I(16) 64:IV–84:II(79)

Experiment 2: true break date 75:I with �1 D 4.46, �2 D 2.00

sup-Wald procedure 78.38 23.21 74:IV–84:II(39) 73:III–93:IV(82)
LS procedure 73.00 15.36 71:IV–75:I(14) 60:IV–75:II(59)

Experiment 3: true break date 66:I with �1 D 4.46, �2 D 2.00

sup-Wald procedure 70.67 34.53 65:III–79:I(55) 64:III–93:IV(118)
LS procedure 64.17 12.14 62:IV–66:I(14) 54:I–66:II(50)

Experiment 4: true break date 84:I with �1 D 2.00, �2 D 4.46

sup-Wald procedure 79.07 35.68 69:III–84:II(60) 56:I–85:IV(120)
LS procedure 85.84 12.33 84:I–87:II(14) 83:III–96:II(52)

Experiment 5: true break date 75:I with �1 D 2.00, �2 D 4.46

sup-Wald procedure 71.51 23.68 65:III–75:II(40) 56:I–76:III(83)
LS procedure 77.04 15.85 75:I–78:III(15) 74:IV–90:II(63)

Experiment 6: true break date 66:I with �1 D 2.00, �2 D 4.46

sup-Wald procedure 63.84 13.59 59:IV–66:II(27) 55:IV–67:III(48)
LS procedure 68.44 20.72 66:I–69:IV(16) 65:IV–85:II(79)

Note: The 67% interval is the interval between the 16.5% and the 83.5% quantile, and the 95% interval is the interval
between the 2.5% and the 97.5% quantile. The numbers of quarters spanned by the intervals are given in parentheses.
Means and standard deviations are given in decimal notation, where 0.00, 0.25, 0.50 and 0.75 represent quarters I, II,
III and IV.
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Figure 2. Histogram of break date estimates obtained using the sup-Wald procedure (upper panel) and least
squares procedure (lower panel) for 10 000 artificial realizations of fgtg. The true break point is at 1984:I,

and the standard deviation of the AR(1) innovations is 4.46 before and 2.00 after the break

reduction in innovation variance �2 built into our experimental design, the dispersion of the
small-sample distributions of the break date estimators we obtain is enormous. Also note that the
sup-Wald procedure has a small positive bias while the LS estimator is slightly downward biased.

We conducted five additional experiments (Experiments 2–6) in order to explore two potential
sources of the skewness exhibited by the distributions of these statistics. The two sources are
the location of the break and the temporal ordering of the high- and low-variance regions. To
explore the potential influence of the location of the break, we preserved the temporal ordering
of Experiment 1 (an initial standard deviation of 4.46, followed by 2.00), and considered two
alternative break dates: one at date 1975:I (the mid-point of the sample) under Experiment 2; the
other at date 1966:I (the mirror image of the 1984:I date) under Experiment 3. Resulting intervals
(reported in Table II) indicate the same pattern of skewness obtained under Experiment 1: the
sup-Wald distributions remain skewed to the right, and the LS distributions remain skewed to the
left. The right-skewness of the sup-Wald distributions is illustrated by the close proximity of the
lower bounds of its intervals with the mean break dates, and the extreme distance of the upper
bounds. For example, lower bounds of the 67% quantile intervals are within 16 and 18 quarters
of the mean break dates in Experiments 2 and 3, while upper bounds differ by 24 and 34 quarters.
The left-skewness of the LS distributions is reflected by the mirror image of this relationship.
Thus break location is not an important factor in determining the skewness of these distributions.

To explore the potential influence of the temporal ordering of the high- and low-variance regions,
we conducted three additional experiments (Experiments 4–6, summarized in Table II) featuring
the three break dates considered above, but with a reversal of break orderings from low- to high-
variance regimes. Here the pattern of skewness is exactly reversed: the sup-Wald distributions are
skewed to the left in this case, and the LS distributions to the right. This is illustrated once again
by comparing the relative proximity of upper and lower bounds of the quantile intervals with
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mean break dates. In addition, Figure 3 illustrates both distributions obtained under Experiment
4 (featuring a break date at 1984:I). Thus it appears that the skewness of these distributions
depends on the temporal ordering of high- and low-variance regions: sup-Wald distributions are
skewed towards low-variance regions, and LS distributions towards high-variance regions. And
both distributions feature enormous dispersions, making them ineffective in pinpointing break
dates in the variance of AR-innovations.

The reason for the skewness of the LS distributions towards the high-variance region is the fact
that the probability of obtaining small e2

t realizations under a distribution with high variance �2

is higher than the corresponding probability of obtaining large e2
t realizations under a distribution

with low variance. Hence, based upon the objective function (3), the likelihood of classifying a
date as a break date towards a low-variance regime is higher when the date is in a high-variance
regime than when it is in a low-variance regime. Interestingly, this effect is overcompensated
by the heteroskedasticity correction incorporated in the objective function (2) of the sup-Wald
procedure. This overcompensation leads to skewness in the sup-Wald distributions in the opposite
direction of the skewness exhibited by the LS distributions.

As to the rather low precision of the break date estimators, note that their objective functions
(2) and (3) are based upon fourth-order sample moments; this generates an enormous dispersion
in the objective functions, and hence in the resulting estimates. To address this particular issue one
could use regressions of jetj as a measure for � (instead of e2

t as a measure for �2) to construct
corresponding LS-break date estimators. Indeed, reconducting Experiment 1 for the LS procedure
with auxiliary regressions based upon jetj reveals a significant reduction in the dispersion of the
corresponding break date estimates relative to those based upon e2

t . In particular, the 67% and
95% quantile intervals are [1982:II, 1984:I] and [1976:IV, 1985:I] in this case, compared with
intervals of [1980:II, 1984:I] and [1964:IV, 1984:II] obtained using e2

t .
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Figure 3. Histogram of break date estimates obtained using the sup-Wald procedure (upper panel) and least
squares procedure (lower panel) for 10 000 artificial realizations of fgtg. The true break point is at 1984:I,

and the standard deviation of the AR(1) innovations is 2.00 before and 4.46 after the break
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Yet another important feature of the break date estimators responsible for their imprecision is
that the variance estimates O�2

1 and O�2
2 are based upon incorrect classifications of the e2

t observations
into high- and low-variance regimes for all potential break dates except for the true date. Hence
the objective functions (2) and (3) are based upon inconsistent parameter estimates. This tends
to flatten the objective functions relative to their hypothetical counterparts based upon the true
values of �2

1 and �2
2 , and also relative to functions based upon consistent estimates. In the following

section we present an alternative approach to identifying break dates that meets these objections,
and so may be more suitable in pinpointing break dates.

3. A PROBABILISTIC APPROACH

As above, let T denote the total number of observations of the variable gt. We begin by dividing
these observations into three groups. The first contains observations in the range of dates [1, T1], the
second contains observations in the range [T1 C 1, T2], and the third contains observations in the
range [T2 C 1, T]. By assumption, the first group is known to belong to the regime prevailing before
the break, and the last to the regime prevailing after the break. The goal of the exercise involves
dividing the observations in the middle group into their respective regimes. This is accomplished
by comparing probabilities associated with each possible division of these observations.

To calculate these probabilities, let L1�Ðj�1� denote the likelihood function prevailing under
the initial regime, and L2�Ðj�2� the likelihood function prevailing under the final regime (the �’s
representing vectors of parameters). Finally, let j0 denote the true unknown break date; following
convention, j0 is defined as the last period of the first regime. The conditional likelihood given
the occurrence of a break at date j, L�fgtgjj0 D j, �1, �2�, is given by

L�fgtgjj0 D j, �1, �2� D L1�fgtgj
tD1j�1� Ð L2�fgtgT

tDjC1j�2� �4�

The conditional probability associated with the occurrence of a break at date j, p�j0 D
jjfgtg, �1, �2�, is given by its likelihood value relative to the likelihood values associated with
each potential break date:

p�j0 D jjfgtg, �1, �2� D L�fgtgjj0 D j, �1, �2�
T2∑

�DT1C1

L�fgtgjj0 D �, �1, �2�

�5�

Our point estimate of j0 is simply the date j 2 [T1 C 1, T2] receiving the highest conditional
probability, i.e.,1

jŁ
p D arg max

fT1�j�T2g
[p�j0 D jjfgtg, �1, �2�] D arg max

fT1�j�T2g
[L�fgtgjj0 D j, �1, �2�] �6�

Further, by accumulating probabilities, we can compute the CDF of jŁ
p, from which we can

calculate the conditional probability that j0 falls within any given interval. In turn, for any given
nominal coverage probability (e.g., 67% or 95%), one can construct associated coverage interval(s).

1 Note that the calculation of (5) and (6) requires parameter estimates �O�1, O�2�; alternative strategies for obtaining such
estimates are discussed below. Note further that �1 and �2 can potentially contain subsets of elements that are identical,
which would enhance the efficiency with which estimates of �1 and �2 may be obtained.
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Here, approximate lower bounds of the nominal x% intervals we construct guarantee that the
CDFs evaluated at that point are at least as large as �100 � x�/200; approximate upper bounds are
constructed analogously. Note that coverage intervals are distinct from quantile intervals of the
sampling distribution: the former reflect uncertainty regarding the break date conditional on the
observed sample; the latter reflect uncertainty one would encounter in facing repeated samples.
As above, small-sample quantile intervals are computed through Monte Carlo experimentation.

This probabilistic approach is closely related to allocation rules used in classification analysis
to partition data into disjoint groups or clusters typically using the objectives’ probabilities of
belonging to particular groups (see, e.g., Seber, 1984). Note that in our case all observations are
automatically and simultaneously allocated into their corresponding group by fixing the break
date, given the temporal ordering of the observations. Taking this special feature into account, our
probabilistic approach is equivalent to standard assignment rules in classification analysis which
minimize the probability of classification errors (e.g., see Seber, 1984, ch. 6.2). Also notice that if
the prior probability of j0 D j is equal for all j 2 [T1 C 1, T2] the probability (5) corresponds
(for known parameter values �1 and �2) to the posterior probability of j D j0. This adds a
Bayesian flavour to the probabilistic approach. However, a fully Bayesian approach, which is
beyond the scope of this paper, would additionally require a prior distribution for the parameters
�1 and �2. Finally, note that if the distributions of gt under the two regimes are completely
known and Gaussian, Bai’s (1997) LS estimate for a break date in the mean process of gt is
identical to that estimated by the probabilistic approach: in this case the objective function of the
probabilistic approach L�fgtgjj0 D j, �1, �2� is a monotonic transformation of the corresponding
sum of squared errors which are to be minimized by the LS estimate. However, the probabilistic
approach generalizes more naturally to the case of breaks in higher-order moments and to the case
of multiple breaks. In particular, for the case of n breaks with true break dates j�1�

0 , . . . , j�n�
0 one

would maximize the corresponding probability p�j�1�
0 D j�1�, . . . , j�n�

0 D j�n�jfgtg, �1, . . . , �nC1�.
Practical implementation of the probabilistic procedure requires specifications of the likelihood

functions and estimates of the parameters appearing in (5). Likelihood functions may be specified
parametrically, semi-parametrically or non-parametrically. In the empirical applications below,
we first employ a parametric implementation, and then outline a non-parametric implementation.
Also, there are various ways in which available information may be used to obtain parameter
estimates. We consider two approaches here. In the first (hereafter, the one-shot approach), �1 is
estimated (e.g., by maximum likelihood) using the observations in the range [1, T1], and remains
fixed for all subsequent probability calculations according to (5) (and likewise for �2). This ensures
that the parameter estimates are based only on observations which are by assumption correctly
allocated to their corresponding regimes and, hence, leads to an objective function based on
consistent parameter estimates. However, this approach ignores potentially useful information
provided by observations between T1 C 1 and T2. Accordingly, in the second (hereafter, the
sequential approach), �1 and �2 are estimated initially as just described, but are then updated by
sequentially assigning initially unallocated observations to the two regimes. This is accomplished
as follows. Given the initial estimates of �1 and �2, we calculate the probability that j0 D T1 C 1,
and then the probability that j0 D T2. If the former probability is smaller than the latter, we
increase T1 by one period (thus classifying its associated observation as belonging to regime 1),
and re-estimate �1. Otherwise we decrease T2 by one period, and re-estimate �2. This process is
then repeated, and continues until all observations have been classified. At that stage, the last date
associated with regime 1 is the estimated break date. Note that this algorithm ensures that the
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allocation in each step is based upon consistent parameter estimates given the allocation decision
in the preceding step. Associated coverage intervals are constructed using the CDF obtained using
the final estimates of ��1, �2�.2

4. EMPIRICAL APPLICATION, PARAMETRIC IMPLEMENTATION

As in Section 2, our interest in this application is in identifying the timing of the break in the
innovation variance �2 associated with (1) for GDP growth. This involves assigning the residuals
associated with (1) to separate likelihood functions. We do this here under the assumption that
innovations to (1) are Gaussian, implying normal likelihood functions for the residuals.

Under normality, �1 and �2 consist of a single parameter: the innovation variances �2
1 and

�2
2 . The break date estimate is according to (5)–(7) obtained by maximizing the following

objective function:

Q�j� D �1

2

j∑
tD1

[
ln� Q�2

1� C e2
t

Q�2
1

]
� 1

2

T∑
tDjC1

[
ln� Q�2

2 � C e2
t

Q�2
2

]
�7�

where Q�2
1 and Q�2

2 are estimates for the innovation variances obtained using sample variances of the
residuals et from autoregression (1) computed over the relevant ranges of the sample. As above,
initial and final ranges used to obtain these estimates for the one-shot implementation and to
obtain initial estimates for the sequential implementation correspond to the first and last 15% of
the total observations. Results obtained using the one-shot and sequential estimation procedures
are presented in Table III; break-point probability estimates and corresponding CDFs are plotted
in Figure 4.

Note from Table III that point estimates obtained using both procedures are as identified above:
1984:I. In addition, 67% and 95% coverage intervals obtained using the one-shot procedure are
[1982:III, 1984:I] (7 quarters) and [1981:IV, 1984:III] (12 quarters); intervals obtained using
the sequential procedure are [1983:I, 1984:I] (5 quarters) and [1982:I, 1984:IV] (12 quarters).
The similarity of results obtained using these alternative implementations of the probabilistic
procedure is underscored in Figure 4 by the similarity of the probability estimates they produce.
This similarity reflects the fact that the estimates of �1 and �2 obtained under the one-shot

Table III. Break date estimates based upon the parametric probabilistic approach

Estimate 67% coverage interval 95% coverage interval

One-shot 84:I 82:III–84:I(7) 81:IV–84:III(12)
Sequential 84:I 83:I–84:I(5) 82:I–84:IV(12)

Note: The numbers of quarters covered by coverage intervals are given in parentheses.

2 Yet another possible implementation would be a probabilistic version of the k-means algorithm proposed, e.g., by
Sebestyen (1962) in order to partition data into clusters: in the first step the break date is estimated according to the
one-shot approach based on parameter estimates using the observations in the intervals [1, T1] and [T2 C 1, T]; in the
second step parameters are re-estimated based on the partition of the observations obtained in the first step. The steps are
repeated until no further increase in the probability (5) occurs. This algorithm could also be the basis for an implementation
for estimating multiple breaks. The implementation of this algorithm to the case of one and multiple breaks is left for
future research.
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Break-Point Probabilities
One-Shot
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0.08

0.00
1981 1982 1983 1984 1985 1986 1987

Break-Point Probabilities
Sequential

0.24

0.16

0.08

0.00
1981 1982 1983 1984 1985 1986 1987

Cumulated Break-Point Probabilities
One-Shot

1981 1982 1983 1984 1985 1986 1987

1.1

0.7

0.3

-0.1

Cumulated Break-Point Probabilities
Sequential

1981 1982 1983 1984 1985 1986 1987

1.1

0.7

0.3

-0.1

Figure 4. Estimated break date probabilities for a break in the innovation variance associated with an
AR(1) for GDP growth obtained using the parametric one-shot implementation (upper left panel) and
the parametric sequential implementation (upper right panel); with corresponding cumulated break-point

probabilities (lower panels)

procedure, 5.04 and 2.08, are close to the ultimate estimates 4.46 and 2.00 obtained under the
sequential procedure.

We now turn to an analysis of the repeated-sample performance of our procedures, which can
be used to produce small-sample quantile intervals. Once again, this is facilitated via Monte Carlo
experimentation, under which we applied both versions of our procedure to data generated using
the DGPs employed in Experiments 1–6 above. Results of these experiments are presented in
Table IV.

The first result to note from Table IV regards the invariance of the performance of our
procedure to the location of breaks and temporal ordering of the high- and low-variance regions.
The distributions of estimated break dates obtained under all six DGPs are roughly symmetric
under both versions of our procedure. This is in contrast to the behaviour of the distributions
associated with the sup-Wald and LS procedures. Furthermore, in contrast to sup-Wald and LS,
the probabilistic estimators seem to be unbiased. Moreover, the dispersions of the distributions
associated with both versions of our procedure are roughly stable across the six DGPs, and much
tighter. For example, under Experiment 1, 67% and 95% quantile intervals obtained using the
one-shot procedure are [1983:I, 1984:II] (6 quarters) and [1980:IV, 1987:II] (27 quarters); and for
the sequential procedure are [1983:I, 1984:II] (6 quarters) and [1981:I, 1986:IV] (24 quarters). In
contrast, recall that the 67% and 95% intervals obtained using the sup-Wald procedure spanned
26 and 47 quarters, those obtained using the LS procedure based on squared residuals spanned
16 and 79 quarters and based on absolute residuals 8 and 34 quarters. Also note that standard
deviations are significantly reduced: from 13.23 (sup-Wald), 20.44 (LS based on squared residuals)
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Table IV. Monte Carlo experiments with the parametric probabilistic approach

Mean Std. dev. 67% interval 95% interval

Experiment 1: true break date 84:I with �1 D 4.46, �2 D 2.00

One-shot 83.81 6.15 83:I–84:II(6) 80:IV–87:II(27)
Sequential 83.79 5.65 83:I–84:II(6) 81:I–86:IV(24)

Experiment 2: true break date 75:I with �1 D 4.46, �2 D 2.00

One-shot 74.91 7.42 74:I–75:III(7) 72:I–79:I(29)
Sequential 74.82 6.50 74:I–75:II(6) 72:II–77:III(23)

Experiment 3: true break date 66:I with �1 D 4.46, �2 D 2.00

One-shot 65.92 8.52 65:I–66:II(6) 62:IV–70:I(30)
Sequential 65.78 7.09 65:I–66:II(6) 63:I–68:III(23)

Experiment 4: true break date 84:I with �1 D 2.00, �2 D 4.46

One-shot 84.05 8.83 83:III–85:I(7) 80:I–87:I(29)
Sequential 84.20 7.29 83:IV–85:I(6) 81:IV–87:I(22)

Experiment 5: true break date 75:I with �1 D 2.00, �2 D 4.46

One-shot 75.10 7.67 74:III–76:I(7) 71:I–78:II(30)
Sequential 75.17 6.67 74:IV–76:I(6) 72:II–78:I(24)

Experiment 6: true break date 66:I with �1 D 2.00, �2 D 4.46

One-shot 66.17 6.40 65:IV–67:I(6) 62:II–69:I(28)
Sequential 66.19 5.81 65:IV–67:I(6) 62:IV–69:I(26)

Bootstrap from the actual sample with a break date at 84:I

One-shot 83.50 6.02 82:IV–84:II(7) 80:I–86:I(25)
Sequential 83.50 5.43 82:IV–84:I(6) 80:II–85:III(22)

Note: The 67% interval is the interval between the 16.5% and the 83.5% quantile and the 95% interval is the interval
between the 2.5% and the 97.5% quantile. The numbers of quarters spanned by the intervals are given in parentheses.
Means and standard deviations are given in decimal notation, where .00, .25, .50 and .75 represent quarters I, II, III and
IV.

and 10.07 (LS based on absolute residuals) to 6.15 (one-shot) and 5.65 (sequential). Finally, it
should be mentioned that under all experiments the sequential approach performs slightly better
than the one-shot implementation.

The explanation for the improved precision of the probabilistic approach relative to the sup-Wald
and the LS approach based on squared residuals is that the objective function of the probabilistic
approach (7) is based on second-order sample moments of et rather than fourth-order moments,
while the objective functions (3) and (4) are based on fourth-order sample moments. Moreover, as
discussed above, the probabilistic approach employs consistent (one-shot) or ‘step-wise’ consistent
(sequential) parameter estimates of �1 and �2, while the sup-Wald and LS procedures employ
inconsistent estimates. This is particularly relevant when comparing the probabilistic approach with
the LS procedure based on absolute residuals. Regarding the superior performance of the sequential
implementation relative to the one-shot approach, note that the former exploits information from
observations between T1 and T2 as soon as they are allocated to their regimes, while such
information is ignored by the latter.

We conclude with an additional experiment, which is a bootstrap version of Experiment 1.
Specifically, here we modified the DGP used in Experiment 1 so that, instead of obtaining
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artificial realizations of innovations from normal distributions, we obtained them by sampling
with replacement from the residuals obtained by estimating (1) with a break date at 1984:I. All
other aspects of the DGP are unchanged. We considered this experiment in order to investigate the
sensitivity of our results to a departure from the normality assumption. Results of this experiment
are also given in Table IV, and match closely those obtained under Experiment 1. For example, the
mean of the break date estimates is now 1983:III rather than 1984:I; and quantile interval ranges
differ by no more than 2 quarters. The similarity of these results suggests that the assumption of
normality does not play a critical role in this application.

5. EMPIRICAL APPLICATION, NON-PARAMETRIC IMPLEMENTATION

As in any likelihood-based analysis, one can always replace distributional assumptions used to
specify likelihood functions with non-parametric approximations. Typically, this involves a tradeoff
of efficiency versus robustness. Here, we demonstrate the performance of our procedure using a
particular non-parametric implementation, applied once again to an identification of the timing of
the break in the innovation variance �2 associated with (1) for GDP growth. In this case, instead of
assigning the residuals associated with (1) to separate likelihood functions specified parametrically,
the likelihood functions are approximated non-parametrically. As in the parametric implementation,
likelihood approximations are computed using the one-shot and sequential methods for defining
reference subsamples.

The implementation considered here is based on the use of a Gaussian kernel. For a given
sequence of observations fgt : t : 1 ! Ng the pdf associated for a given value of g, f (g), is
approximated using

f�g� / 1

h Ð N

N∑
tD1

exp

{
�1

2

(
g � gt

h

)2
}

�8�

where the parameter h is a bandwidth parameter that determines the smoothness of the approxi-
mated pdf.

In the present context, we must estimate two densities, one for each regime. If our objective
were that of producing estimates of these component densities with desirable asymptotic properties,
we would select bandwidths accordingly (e.g., see Härdle, 1989). Here, however, our objective
is that of producing accurate (finite-sample) estimates of the break date, not of the regime
densities themselves. Therefore, we proceeded by selecting the bandwidths of the two regimes
(h1 and h2) so as to minimize the standard deviation of the sequential estimates of the break
date. This ‘calibration’ exercise is conducted by Monte Carlo simulation. We considered two
simulations: a Gaussian calibration, using the parameter and break date estimates obtained using
our one-shot parametric procedure; and a bootstrap calibration, using bootstrap simulations of
the corresponding two subsamples. The former yielded h1 D 1.737, h2 D 1.026; the latter yielded
h1 D 1.515, h2 D 0.777.

The selection of bandwidths unavoidably involves calibration. However, our experience in this
case suggests that this calibration need not be particularly fine, since moderate departures (e.g.,
10%–20%) from the ‘optimal’ values we have produced yield very similar results. This relative
robustness suggests that, in general, one ought to be able to construct good rules of thumb for
bandwidth selection using, e.g., the ‘response surface’ techniques of Hendry (1984). In the present
case, one such rule of thumb involves fixing the bandwidth ratio h1/h2 equal to that of the ratio
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Table V. The non-parametric probabilistic approach

Break date estimates for the actual data

Estimated date 67% coverage interval 95% coverage interval

One-shot 83:II 83:I–84:II(6) 81:IV–85:III(16)
Sequential 84:I 83:I–84:II(6) 82:I–85:I(13)

MC Experiment 1: true break date 84:I with �1 D 4.46, �2 D 2.00

Mean Std. dev. 67% interval 95% interval

One-shot 83.50 6.04 82:III–84:I(7) 80:I–86:I(25)
Sequential 83.50 5.63 82:III–84:I(7) 79:IV–85:II(23)

Note: Non-parametric density estimates for the residuals are obtained by using a Gaussian density kernel with bandwidth
parameter h1 D 1.737 for the range [1, T1] and h2 D 1.026 for the range [T2 C 1, T]. These values were obtained using
a Gaussian Monte Carlo calibration used to minimize the variance of the break date estimator. The 67% interval is the
interval between the 16.5% and the 83.5% quantile, and the 95% interval is the interval between the 2.5% and the 97.5%
quantile. The numbers of quarters spanned by the intervals are given in parentheses. Means and standard deviations are
given in decimal notation, where 0.00, 0.25, 0.50 and 0.75 represent quarters I, II, III and IV.

of standard deviations �1/�2. This reduces the dimensionality of the calibration exercise (response
surface) to one dimension without involving a significant loss of performance. Here, use of the
two pairs of values we produced yielded similar results, thus we report below only those results
obtained using the former pair; this is done in Table V.

Application of this procedure to the actual data yielded point estimates of 1983:II in the one-shot
case, and 1984:I in the sequential case (recall both point estimates are 1984:I in the parametric
implementations). Also, three of the four sets of coverage intervals obtained in this case closely
match their parametric counterparts (the exception being the 95% interval obtained under the one-
shot implementation, which is four quarters wider than its parametric counterpart). This similarity
of results once again suggests that the assumption of normality does not play a critical role in this
application.

Finally, we concluded our analysis by reconducting Experiment 1 using these non-parametric
implementations; results are also presented in Table V. Once again, means, standard deviations
and quantile intervals are similar to their parametric counterparts. Means of the estimated break
dates are 1983:III under both the one-shot and sequential implementations, as opposed to 1983:IV
in the parametric case; 67% quantile intervals span 7 quarters here, as opposed to 6 quarters
in the parametric case; and 95% intervals are 25 and 23 quarters here (one-shot and sequential
implementations), compared with 27 and 24 quarters under the parametric implementations.

Taken together, the full range of results we have obtained using the various implementations
of our procedure speak to its general effectiveness in pinpointing the timing of a break even in
higher-order moments of a process like the variance.

6. CONCLUSION

We have proposed a two-step strategy for assessing structural stability in time-series frameworks
when potential change dates are unknown. The first step involves the use of existing tests for
structural stability in detecting the presence of structural change. The second step involves the use
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of the likelihood-based procedure we have proposed for assigning conditional probabilities to the
occurrence of structural breaks at alternative dates.

The procedure is designed to classify each element of a set of observations into one of several
potential categories. Given a model specification with one regime change identified a priori,
associated observations will correspond with one of two likelihood functions: one prevailing prior
to the break date and one after the break date. The procedure identifies the break date as the
optimal point at which to divide the sample.

We have illustrated the performance of our procedure through a series of Monte Carlo
experiments, and an assessment of the volatility reduction in the growth rate of US GDP. Using
both parametric and non-parametric implementations, we have found the procedure to be effective
in improving the precision with which inferences regarding timing can be made. Notably, under
our leading experimental design, Bai’s (1997) least squares procedure based on squared residuals
generates a finite-sample standard deviation of 20.44 quarters and based on absolute residuals
a standard deviation of 10.07 quarters, while our procedure generates a standard deviation of
6.15 quarters under the parametric implementation we employ, and 5.65 quarters under the non-
parametric implementation.
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